
1

Lattice-Based Public Key Searchable Encryption
from Experimental Perspectives

Rouzbeh Behnia, Muslum Ozgur Ozmen, Attila A. Yavuz†, Member, IEEE,

Abstract—Public key Encryption with Keyword Search (PEKS) aims in mitigating the impacts of data privacy versus utilization dilemma

by allowing any user in the system to send encrypted files to the server to be searched by a receiver. The receiver can retrieve the

encrypted files containing specific keywords by providing the corresponding trapdoors of these keywords to the server. Despite their

merits, the existing PEKS schemes introduce a high end-to-end delay that may hinder their adoption in practice. Moreover, they do not

scale well for large security parameters and provide no post-quantum security promises. In this paper, we propose two novel

lattice-based PEKS schemes that offer a high computational efficiency along with better security assurances than that of the existing

alternatives. Specifically, our NTRU-PEKS scheme achieves 18 times lower end-to-end delay than the most efficient pairing-based

alternatives. Our LWE-PEKS offers provable security in the standard model with a reduction to the worst-case lattice problems. We fully

implemented our NTRU-PEKS scheme and benchmarked its performance as deployed on Amazon Web Services cloud infrastructures.

Index Terms—applied cryptography, Public Key Encryption with Keyword Search (PEKS), lattice-based cryptography, searchable

ecnryption

F

1 INTRODUCTION

C LOUD computing has significantly impacted the com-
puting infrastructure and enabled a large pool of

applications. For example, data outsourcing [1] permits
small/medium-sized businesses to increase data availability
by minimizing the management and maintenance costs.
Data outsourcing, despite its merits, raises significant data
privacy concerns for clients. Traditional encryption tech-
niques can be used to overcome such privacy concerns.
However, standard encryption does not permit search ca-
pabilities on the encrypted data. Therefore, a significant
amount of research is focused on Searchable Encryption
(SE) technologies that can be used to efficiently address this
problem. There are two main branches of SE where each is
tailored for a distinct set of applications.

Dynamic Searchable Symmetric Encryption (DSSE) (e.g.,
[2], [3], [4]) provides search capabilities on encrypted data
for private data outsourcing applications (e.g., data storage
on the cloud), in which the client uses her own private
key to encrypt and then search on her own data over the
cloud. Public Key Encryption with Keyword Search (PEKS)
schemes [5] allow any client to encrypt data with specified
keywords under the public key of a designated receiver. The
designated receiver, Alice, can then use her private key
to generate and send trapdoors for her desired keywords,
and enable the server to search on the encrypted data to

† Work done in part while Attila A. Yavuz was at Oregon State University,
Corvallis, OR, USA.

• Rouzbeh Behnia and Muslum Ozgur Ozmen are with the Department of
Electrical Engineering and Computer Science, Oregon State University,
Corvallis, OR, USA.
E-mail: {behniar, ozmenmu}@oregonstate.edu

• Attila A. Yavuz is with the Department of Computer Science and Engi-
neering, University of South Florida, Tampa, FL, USA.
E-mail: attilaayavuz@usf.edu

retrieve the files that are associated with the keyword. PEKS
is well suited for distributed applications (e.g., e-mail, audit
logging for Internet of Things, etc.) where a large number of
users/entities generate encrypted data to be retrieved by a
receiver. The focus of this paper is on PEKS schemes.

Figure 1 illustrates a potential application which is con-
sidered as the main motive for the initial proposal of PEKS
schemes in [5]. Alice, who is assumed to have a number of
devices (e.g., cell phone, desktop, etc.), wants her e-mails to
be routed to her devices based on the keywords associated
with them. For instance, when the sender, Bob, sends her an
e-mail with keyword “urgent”, the e-mail should be routed
to her cellphone. To achieve this, after encrypting the e-mail
content with a conventional public key encryption, Bob uses
a PEKS scheme to encrypt the keyword “urgent” and sends
it together with the encrypted e-mail to the e-mail server.
Alice can then use her private key to generate the trapdoor
corresponding to keyword “w = urgent” and ask the server
to retrieve all the e-mails associated with w.

Another important application of PEKS schemes is in
storing and searching on private log files. PEKS schemes can
enable a heterogeneous set of devices to send encrypted log
files concatenated with a searchable ciphertext of distinct
keywords to an untrusted storage server. To analyze the
log files, an auditor can use his private key to generate
trapdoors and enable the server to search and return the
files that are associated with the target keyword.

1.1 Research Gap

Since their introduction in [5], several PEKS schemes with a
variety of features have been proposed (e.g., [6], [7], [8], [9]).
However, the wide adoption of PEKS schemes in practice
has been hindered due to a number of obstacles:
•High End-to-End Delay: The most computationally ex-

pensive part of the PEKS is generally the search phase,

3

rity and are currently considered secure against quantum
computers. It is worth noting that lattice-based schemes
also have a substantially smoother performance response to
increased key sizes compared to conventional cryptographic
primitives (e.g., ECC, RSA).
• Full-Fledged Implementation: We provide a full-

fledged implementation of our NTRU-PEKS scheme and its
most efficient pairing-based counterpart with deployment
in actual cloud setting with Enron e-mail dataset. We chose
Amazon Web Server (AWS) as the server in our system,
a commodity hardware and an ARM Cortex-A53 as the
client machines. One can easily see the importance of a full-
fledged implementation when comparing the benchmark
provided from the simulation results in [19] and the bench-
mark results of the implementation in Section 4. Detailed
experimental results are further explained in Section 4. We
also open-sourced our implementations for public testing
and wide adoption (see Section 4).

1.3 Limitations

We present two lattice-based schemes, one with security in
the random oracle model and one in the standard model. In
this section, we point out their limitations as compared to
their conventional pairing-based counterparts.

The Trapdoor algorithm of NTRU-PEKS (secure in
the random oracle model) is slower than that of BCOP.
One should note that the Trapdoor algorithm is to be
executed once per each query on the receiver’s side and has
negligible effect on the end-to-end delay (e.g., see Figure 2).
Another downside of NTRU-PEKS is the parameter sizes,
for instance, the searchable ciphertext size in NTRU-PEKS
is significantly larger than that of BCOP [5]. We should
note that while the storage blow-up remains a concern, the
increased communication overhead and disk access time
have negligible effects on the end-to-end delay (e.g., see
Figure 2). NTRU-PEKS provides very efficient PEKS and
Test algorithms. The efficient PEKS algorithm provides
significant efficiency for the sender as it is called to generate
searchable ciphertext for each keyword to be attached to
the file. The Test algorithm is the main factor in reducing
end-to-end delay in PEKS schemes since it is executed once
for every keyword-file pairs in the database (e.g., see Figure 2).
Given all the computation efficiency gains, we believe the
storage blow-up might be a favorable trade-off for certain
applications where end-to-end delay and long-term security
are more critical than the storage.

In the line of proposing PEKS schemes in the standard
model, to the best of our knowledge, the proposed LWE-
PEKS scheme provides the highest security promise with
reduction to worst-case problems. However, as shown in
Section 4, it is significantly less efficient (in both compu-
tation and storage) than Zhang and Imai’s pairing-based
PEKS scheme which is also secure in the standard model
[17].

1.4 Differences Between this Article and its Preliminary

Version in [19]

We highlight the main differences of this article and its
preliminary version in [19] as follows: (i) We provide a
full-fledged implementation of NTRU-PEKS and its most

efficient counterpart (i.e., BCOP [5]) on commodity hard-
ware, ARM processor and cloud server. (ii) We introduce the
first LWE-based PEKS scheme in the standard model (LWE-
PEKS) with a security reduction to the worst-case lattice-
based problems. (iii) We provide a detailed cost dissection
analysis to measure the computation cost, communication
overhead, and disk access time of the proposed schemes.
(iv) We expanded our security discussion and provided a
set of recommended parameter lists for our scheme.

2 PRELIMINARIES

In this section, we provide definitions and notations that are
used by our schemes. For the sake of compliance, we try to
use similar notation as in [13] and [14].
Notations. a

$←− X denotes that a is randomly selected
from distribution X . Hi for i ∈ {1, . . . , n} denotes a hash
function which is perceived to behave as a random oracle.
We represent vectors as bold letters v, while scalars are rep-
resented as non-bold letters i.e., v. AO1,...,On(.) denotes that
algorithm A is provided with access to oracles O1, . . . ,On.
The norm of a vector v is denoted by ‖v‖. dxc rounds x
to the closest integer. x =∆ y means x is defined as y. The
function gcd(x, y) returns the greatest common divisor of
values x and y.

2.1 Identity-Based Encryption

Definition 1. An IBE scheme is a tuple of four algorithms
IBE = (Setup,Extract,Enc,Dec) defined as follows.

• (mpk,msk)← Setup(1k): On the input of the secu-
rity parameter(s), this algorithm publishes system-
wide public parameters params, outputs the master
public key mpk and the master secret key msk.

• sk ← Extract(id,msk,mpk): On the input of a
user’s identity id ∈ {0, 1}∗, mpk, and msk, this
algorithm outputs the user’s private key sk.

• c ← Enc(m, id,mpk): On the input of a message
m ∈ {0, 1}∗, identity id, and mpk, this algorithm
outputs a ciphertext c.

• m ← Dec(c, sk): On the input of a ciphertext c, the
receiver’s private key sk and mpk, this algorithm
recovers the message m from the ciphertext c.

Halevi in [20] introduced a condition for an IND-CPA
encryption scheme to offer the notion of anonymity (ANO-
CPA). This condition requires that given two public keys
PK 0 and PK 1 and a ciphertext c, encrypted under PK b,
for b ∈ {0, 1}, a computationally unbounded adversary
should have a negligible advantage in determining b. Later,
Abdalla et. al. [12] extended this condition to identity-
based encryption schemes by including the handling of
random oracles and weakening the statistical requirement
to a computational one. The following definition defines the
new anonymity under chosen plaintext attack for an IBE
scheme (IBE-ANO-RE-CPA).

Definition 2. Given an IBE scheme, the KeyQuery(·) oracle,
as defined below, we associate a bit b ∈ {0, 1} to the adversary A
in the following experiment ExpIBE-ANO-RE-CPA-b

IBE,A (1k):

4

KeyQuery(id)

idSet← idSet ∪ id
return sk

Experiment ExpIBE-ANO-RE-CPA-b
IBE,A (1k)

idSet← ∅, (mpk,msk)
$←− Setup(1k)

for a random oracle H
(id0, id1,m)← AKeyQuery(·),H(mpk) :find stage
c← EncH(m, idb,mpk)
b′ ← AKeyQuery(·),H(c) :guess stage
if {id0, id1} ∩ idSet = ∅ return b′ else, return 0

A’s advantage in the above experiment is defined as:

AdvIBE-ANO-RE-CPA
IBE,A (1k) = Pr[ExpIBE-ANO-RE-CPA-1

IBE,A (1k) = 1]

−Pr[ExpIBE-ANO-RE-CPA-0
IBE,A (1k) = 0]

After queries to KeyQuery(·) and random oracle H in
the find stage, A outputs a challenge (id0, id1,m). A will
then receive c, which is an encryption of the message m
under idb where b ∈ {0, 1} is the output of a fair coin flip.
In the guess stage, given c, A will output its decision bit b′

and wins if b′ = b where id0 and id1 were never queried to
the KeyQuery(·) oracle.

Lemma 1. If an IBE scheme is IBE-IND-CPA and IBE-ANO-
RE-CPA-secure, then it is also IBE-ANO-CPA-secure.

Proof. Please refer to [12].

Abdalla et. al. IBE to PEKS transformation [12]: The
authors prove that if an IBE scheme is IBE-ANO-CPA (in
the sense of [20]) and IBE-ANO-CPA, then one can obtain a
secure PEKS scheme. We use this transformation to obtain
NTRU-PEKS and LWE-PEKS

2.2 Public Key Encryption with Keyword Search

A PEKS scheme consists of the following algorithms.

Definition 3. A PEKS scheme is a tuple of four algorithms
PEKS = (KeyGen,PEKS,Trapdoor,Test) defined as fol-
lows.

• (pk, sk)← KeyGen(1k): On the input of the security
parameter(s), this algorithm outputs the public and
private key pair (pk, sk).

• sw ← PEKS(pk, w): On the input of user’s public
key pk and a keyword w ∈ {0, 1}∗, this algorithm
outputs a searchable ciphertext sw.

• tw ← Trapdoor(sk, w): On the input of a user’s
private key sk and a keyword w ∈ {0, 1}∗, this
algorithm outputs a trapdoor tw.

• d ← Test(tw, sw): On the input of a trapdoor tw =
Trapdoor(sk, w′) and a searchable ciphertext sw =
PEKS(pk, w), this algorithm outputs a decision bit
d = 1 if w = w′, and d = 0 otherwise.

Keyword indistinguishability against an adaptive
chosen-keyword attack for a PEKS scheme (PEKS-IND-
CKA) is defined in the following experiment.

Definition 4. Given a PEKS scheme, and the TdQuery(·) oracle
as defined below, we associate a bit b ∈ {0, 1} to the adversary A
in the following experiment ExpPEKS-IND-CKA-b

PEKS,A (1k).

TdQuery(w)

wSet← wSet ∪ w
tw ← Trapdoor(w, sk, pk)
return tw

Experiment ExpPEKS-IND-CKA-b
PEKS,A (1k)

wSet← ∅, (pk, sk)← KeyGen(1k)
for a random oracle H
(w0, w1)← ATdQuery(.),H(pk) :find stage
sw ← PEKSH(pk, wb)
b′ ← ATdQuery(.),H(sw) :guess stage
if {w0, w1} ∩ wSet = ∅ return b′ else, return 0

A’s advantage in the above experiment is defined as:

AdvPEKS-IND-CKA
PEKS,A (1k) = Pr[ExpPEKS-IND-CKA-1

PEKS,A (1k) = 1]

−Pr[ExpPEKS-IND-CKA-0
PEKS,A (1k) = 0]

After queries to TdQuery(·) and hash oracle H , in the
find stage, A outputs a challenge (w0, w1). Awill then
receive sw, which is a searchable encryption of wb where
b ∈ {0, 1} is the output of a fair coin flip, under pk . In the
guess stage, given sw, A will output its decision bit b′ and
wins if b′ = b where w0 and w1 were never queried to the
TdQuery(·) oracle.

2.2.1 Consistency of PEKS

Due to the properties of NTRU-based encryption scheme,
and following the work of [21], we investigate the
consistency of our scheme from two aspects, namely, right-
keyword consistency and adversary-based consistency [12].

Right-Keyword Consistency: Right-keyword consistency
implies the success of a search query to retrieve records
associated with keyword w for which the PEKS algorithm
had computed a searchable ciphertext. More specifically,
right-keyword consistency refers to the decryption error in
the underlying IBE scheme which leads to the inconsistency
of the Test algorithm in the resulting PEKS scheme.

Adversary-Based Consistency: We define the adversary-
based consistency [12] in the following definition.

Definition 5. Adversary-based consistency of a PEKS scheme is
defined in the following experiment.
Experiment ExpPEKS-Consist

PEKS,A (1k)

(pk, sk)← KeyGen(1k)
for a random oracle H
(w0, w1)← AH(pk), sw0

← PEKSH(pk, w0)
tw1
← TrapdoorH(pk, w1)

if w0 6= w1 and [TestH(pk, tw1
, sw0

) = 1] return 1 else,
return 0
A’s advantage in the above experiment is defined as
AdvPEKS-Consist

PEKS,A (1k) = Pr[ExpPEKS-Consist
PEKS ,A (1 k) = 1].

We note that for schemes with security in the standard
model, the random oracle H is eliminated in Definitions 2,
4 and 5 .

2.3 Tools and Definitions

Integer Lattices: Let B = [b1| . . . |bm] ∈ Rm×m be an m ×
m matrix whose columns are linearly independent vectors

5

b1, . . . ,bm ∈ Rm. The m-dimensional full-rank lattice Λ
generated by B is the set,

Λ = L(B) =

{

y ∈ Rm : ∃s ∈ Zm,y = Bs =
m
∑

i=1

sibi

}

Definition 6. For a prime q, A ∈ Zn×m
q and u ∈ Zn

q , define:

Λq(A) := {e ∈ Zm : ∃s ∈ Zn
q where A>s = e mod q}

Λ⊥
q (A) := {e ∈ Zm : Ae = 0 mod q}

Λu
q (A) := {e ∈ Zm : Ae = u mod q}

NTRU Lattices: Ajtai [22] introduced the Short Integer
Solution (SIS) problem and demonstrated the connection
between average-case SIS problem and worst-case problems
over lattices. Hoffstein et al. [23] proposed a very efficient
public key encryption scheme based on NTRU lattices.
Regev [16] introduced the Learning with Error (LWE) prob-
lem. The SIS and LWE problems have been used as the
building blocks of many lattice-based schemes.

NTRU encryption works over rings of polynomials
R =∆ Z[x]/(xN + 1) and R′ =∆ Q[x]/(xN + 1) which are
parametrized with N as a power-of-two integer. (xN +
1) is irreducible, therefore, R′ is a cyclotomic field. For
f =

∑N−1
i=0 fix

i and g =
∑N−1

i=0 gix
i as polynomials in

Q[x], fg denotes polynomial multiplication in Q[x] while
f ∗g =∆ fg mod (xN +1) is referred to as convolution prod-
uct. For an N -dimension anti-circulant matrix AN we have
AN (f)+AN (g) = AN (f + g), and AN (f)×AN (g) = (f ∗ g).
Definition 7. For prime integer q and f, g ∈ R, h = g ∗ f−1

mod q, the NTRU lattice with h and q is Λh,q = {(u, v) ∈ R2 :
u + v ∗ h = 0 mod q}. Λh,q is a full-rank lattice generated by

Ah,q =

(

AN (h) IN
qIN 0N

)

, where I is an identity matrix.

Note that one can generate this basis using a single
polynomial h ∈ Rq . However, the lattice generated from
Ah,q has a large orthogonal defect which results in the
inefficiency of standard lattice operations. As proposed by
[24], another basis (which is much more orthogonal) can be
efficiently [13] generated by selecting F,G ∈ R and comput-

ing f∗G−g∗F = q. The new base Bf,g =

(

A(g) −A(f)
A(G) −A(F)

)

generates the same lattice Λh,q .

Definition 8. (Gram-Schmidt norm [25]) Given B = (bi)i∈I

as a finite basis and B̃ = (b̃i)i∈I as its Gram-Schmidt orthogo-

nalization, the Gram-Schmidt norm of B is
∥

∥

∥B̃
∥

∥

∥ = max
i∈I
‖bi‖.

Definition 9. (Statistical Distance [14]) Given two random
variables X and Y taking values in a finite set S , the statistical
distance is defined as:

∆(X,Y) =
1

2

∑

s∈S
|Pr[X = s]− Pr[Y = s]|

X is said to be δ−uniform over S if ∆(X,Y) ≤ δ.

Using Gaussian sampling, Gentry et al. [25] proposed a
technique to use a short basis as a trapdoor without dis-
closing any information about the short basis and prevent
attacks similar as in [26].

Definition 10. An N-dimensional Gaussian function ρσ,c :

R → (0, 1]) is defined as ρσ,c(x) =∆ exp(−‖x−c‖2

2σ2). Given

a lattice Λ ⊂ Rn, the discrete Gaussian distribution over Λ is
DΛ,s,c(x) =

ρσ,c(x)
ρσ,c(Λ) for all x ∈ Λ.

If we pick a noise vector over a Gaussian distribution
with the radius not smaller than the smoothing parameter [27],
and reduce the vector to the fundamental parallelepiped of
our lattice, the resulting distribution is close to uniform.
We formally define this parameter through the following
definition.

Definition 11. (Smoothing Parameter [27]) For any N-
dimensional lattice Λ, its dual Λ∗ and ε > 0, the smoothing
parameter ηε(Λ) is the smallest s > 0 such that ρ1/s

√
2π,0(Λ

∗ \
0) 6 ε. A scaled version of the smoothing parameter is defined in

[13] as η
′

ε =
1√
2π

ηε(Λ).

Gentry et al. [25] defined a requirement on the size of
σ related to the smoothing parameter. In [13], Ducas et
al. showed that using Kullback-Leibler divergence, the re-
quired width of σ can be reduced by a factor of

√
2. Based on

[13], [25], [28], for positive integers n, λ, ε 6 2−λ/2/(4
√
2N),

any basis B ∈ ZN×N and any target vector c ∈ Z1×n, the
algorithm (v0 ← Gaussian-Sampler(B, σ, c)) as defined
in [13], [25] is such that ∆(DΛ(B),σ,c,v0) < 2−λ.

In this paper, we will use the same algorithm in our
Trapdoor algorithm of our NTRU-PEKS scheme.

In [16], Regev has shown that for a certain error distri-
bution χ, denoted Ψ̄α, the LWE problem is as hard as the
worst-case SIVP and GapSVP under quantum reduction.

Definition 12. (Distribution of Ψ̄α [16], [29]) For α ∈ (0, 1)
and a prime q, Ψ̄α denotes the distribution over Zq of the random
variable bqXe mod q is a normal random variable with mean 0
and the standard deviation α√

2π
.

Definition 13. (A tool for computing Gram-Schmidt norm [13])
Let f ∈ R′, we denote f̄ as a unique polynomial in f ∈ R′

such that A(f)T = A(f̄). If f(x) =
∑N−1

i=0 fix
i, then f̄(x) =

f0 −
∑N−1

i=1 fN−ix
i.

3 PROPOSED SCHEMES

In this section, we first propose our scheme based on NTRU
lattices (i.e., NTRU-PEKS) which enjoys from highly efficient
Test and PEKS algorithms and then put forth our scheme
in the standard model (i.e., LWE-PEKS) which provides a
high level of security.

3.1 PEKS Scheme from NTRU Lattices

In this section, we present our highly efficient NTRU-
PEKS scheme using Abdalla et. al. transformation [12]
to transform Ducas et. al. IBE scheme [13]. For this
transformation to work, aside being IND-CPA, the
underlying IBE scheme should be anonymous in the sense
of Definition 2. We show that Ducas et. al.’s IBE scheme
is indeed anonymous via Theorem 2. Our NTRU-PEKS
scheme consists of the following algorithms.

(pk, sk)← KeyGen(q,N): Given a power-of-two integer N
and a prime q, this algorithm works as follows.

1) Compute σf ← 1.17
√

q
2N and select f, g ← DN,σf

to compute
∥

∥

∥B̃f,g

∥

∥

∥ and Norm ← max(‖(g,−f)‖ ,

6
∥

∥

∥(qf̄
f∗f̄+g∗ḡ ,

qḡ
f∗f̄+g∗ḡ)

∥

∥

∥). If Norm < 1.17
√
q, proceed to the

next step. Otherwise, if Norm ≥ 1.17
√
q, this process is

repeated by sampling new f and g.
2) Using extended euclidean algorithm, compute ρf , ρg ∈
R and Rf ,Rg ∈ Z such that ρf · f = Rf mod (xN +
1) and ρg · g = Rg mod (xN + 1). Note that if
gcd(Rf ,Rg) 6= 1 or gcd(Rf , q) 6= 1, start from the
previous step by sampling new f and g.

3) Using extended euclidean algorithm, compute u, v ∈ Z

such that u · Rf + v · Rg = 1. Compute F ← q · v · ρg ,
G ← q · u · ρf and k ← bF∗f̄+G∗ḡ

f∗f̄+g∗ḡ e ∈ R and reduce F
and G by computing F ← F − k ∗ f and G← G− k ∗ g.

4) Finally, compute h = g ∗ f−1 mod q and B =
(

A(g) −A(f)
A(G) −A(F)

)

and output (pk ← h, sk ← B).

sw ← PEKS(pk, w): Given cryptographic hash functions
H1 : {0, 1}∗ → ZN

q and H2 : {0, 1}N × {0, 1}N → ZN
q , the

receiver’s public key pk and a keyword w ∈ {0, 1}∗ to be
encrypted, the sender performs as follows.

1) Compute t← H1(w) and pick r, e1, e2
$←− {−1, 0, 1}N ,

k
$←− {0, 1}N .

2) Compute c0 ← r ∗ h+ e1 ∈ Rq and c1 ← r ∗ t+ e2 +
⌊ q
2

⌋

k ∈ Rq .
3) Finally, the algorithm outputs sw = 〈c0, c1, H2(k,

c1)〉.
tw ← Trapdoor(sk, w): Given the receiver’s private key
sk, and a keyword w ∈ {0, 1}∗, the receiver com-
putes t ← H1(w) and using the sampling algorithm
Gaussian-Sampler(B, σ, (t, 0)), samples s and tw such
that s+ tw ∗ h = t.
d← Test(pk, tw, sw): On the input of a receiver’s pub-
lic key pk, a trapdoor tw and a searchable ciphertext
sw = 〈c0, c1, H2(k, c1)〉, this algorithm computes y ←
bc1−c0∗tw

q/2 e and outputs d = 1 if H2(y, c1) = H2(k, c1)
and d = 0, otherwise.

3.1.1 Completeness and Consistency

In this section, we show the completeness and consistency
of NTRU-PEKS.

Lemma 2. Given a public-private key pair (h,B) ←
KeyGen(q,N), a searchable ciphertext sw ← PEKS(pk, w), and
a trapdoor generated by the receiver tw ← Trapdoor(sk, w)
our proposed scheme is complete.

Proof. To show the completeness of our scheme for sw =
〈c0, c1, H2(k, c1)〉, the Test algorithm should return 1
when bc1−c0∗tw

q/2 e = k . To affirm this, we work as follows.

c1 − c0 ∗ tw = (r ∗ t+ e2 +
⌊q

2

⌋

k)− (r ∗ h+ e1) ∗ tw ∈ Rq

= r ∗ s+ e2 + bq
2
ck− tw ∗ e1

Given r, e1, e2, tw and s are all short vectors (due to the
parameters of our sampling algorithm), all the coefficients
of r ∗ s+ e2 − tw ∗ e1 will be in (− q

4 ,
q
4), and therefore,

bc1−c0∗tw
q/2 e = k.

To address right-keyword consistency issues related
to the decryption error of encryption over NTRU lat-
tices, we need to make sure that all the coefficients of

z = r ∗ s+ e2 − e1 ∗ tw are in the range (− q
4 ,

q
4) and q ≈

224 for κ = 80 and q ≈ 227 for κ = 192. As highlighted in
[30], for such large values of q, the probability of decryption
error is negligible with respect to the security parameter.

Theorem 1. A’s advantage in breaking the consistency of
NTRU-PEKS scheme in the sense of Definition 5, after making
q1 and q2 queries to H1(·) and H2(·), respectively, is:

APEKS-Consist
PEKS,A (1k) ≤ (q1 + 2)2

N2log2 q
+

(q2 + 2)2

N2log2 q
+ ε

where the term ε is negligible in term of the security parameter κ.

Proof. Upon inputting q and N , the challenger C initiates
the experiment (h,B) ← KeyGen(q,N). It passes h to the
adversary A and keeps B secret.

• (w0, w1)← AH(pk): A sends C two keywords
(w0, w1).

• sw0
← PEKSH(pk, wb): C computes c0 = r ∗ h+ e1

and c1 = r ∗H(w0) + e2 +
⌊ q
2

⌋

k for a random se-

lection of r, e1, e2
$←− {−1, 0, 1}N , k $←− {0, 1}N , and

sends 〈c0, c1, H2(k, c1)〉 to A.
• tw1

← TrapdoorH(pk, wb): C samples short vectors
s, tw such that s+ tw ∗ h = H(w1) and returns tw
to A.

Following Definition 11, A wins when w0 6= w1, and the
Test algorithm outputs 1 (i.e, H2(k, c1) = H2(y, c1)).

Note that in the above game, A wins when w 6= w′ and
H2(z1, z

′
1) = H2(z2, z

′
2). Let’s assume A makes q1 queries

to H1 and q2 queries to H2 oracles. Let E1 be the event
that there exists (x1, x2) such that H1(x1) = H1(x2) and
x1 6= x2 and let E2 be the event that there exist two pairs
(z1, z

′
1) and (z2, z

′
2) such that H2(z1, z

′
1) = H2(z2, z

′
2) for

z1 6= z2 and z′1 6= z′2. Then if Pr[·] represents the probability
of consistency definition, AdvPEKS-Consist

PEKS,A (1k) ≤ Pr[E1] +
Pr[E2] + Pr[ExpPEKS-Consist

PEKS,A = 1 ∧ Ē1 ∧ Ē2]
Given the domain of our hash functions, the first and

second terms are upper bounded by (q1+2)2

N2log2 q and (q2+2)2

N2log2 q ,
respectively. For the last term, if H1(x1) 6= H1(x2), then in
our scheme, the probability that B1 = B2 is negligible due
to the decryption error. Therefore, H2(y1, B1) 6= H2(y2, B2),
hence, the probability of the last term is also negligible.

3.1.2 Security Analysis

In this section, we focus on analyzing the security of the
NTRU-PEKS scheme.

The security of lattice-based schemes can be deter-
mined by hardness of the underlying lattice problem (in
case of NTRU-PEKS, ring-LWE). Therefore, similar to the
LWE-PEKS scheme, we use the root Hermite factor to
assess the security of the NTRU-PEKS scheme. Accord-
ing to [31], for a short planted vector v in an NTRU
lattice, the associated root Hermite factor is computed as

γn =

√
N/(2πe)×det(Λ)1/n‖v‖

0.4×‖v‖ . Based on [32], [33], γ ≈ 1.004
guarantees intractability and provides approximately 192-
bit security.

Following Lemma 1, to establish the security of our
NTRU-PEKS scheme, we need to rely on the security of the
underlying IBE scheme. Ducas et al. provided the proof of

7

IBE-IND-CPA of their scheme in [13]. Therefore, we are left
to prove the anonymity of their scheme via Theorem 2.

Theorem 2. The IBE scheme of Ducas et al. is anonymous in the
sense of Definition 2 under the decision ring-LWE problem.

Proof. Since the output of the PEKS algorithm of our scheme
corresponds to the encryption algorithm of [34], [35], for
A to determine sw corresponds to which keyword with
any probability Pr ≥ 1

2 + ε, for any non-negligible ε, it
has to solve the decision ring-LWE. Our scheme works
over the polynomial ring Z[x]/(xN + 1), for a power-of-
two N and a prime q ≡ 1 mod 2N . The ring-LWE based
PEKS algorithm computes a pseudorandom ring-LWE vec-

tor c0 = r ∗ h+ e1 (for a uniform r, e1
$←− {−1, 0, 1}N) and

uses H(w) to compute c1 = r ∗ H(w) + e2 +
⌊ q
2

⌋

k that is
also statistically close to uniform. Therefore, the adversary’s
view of 〈c0, c1, H2(k, c1)〉 is indistinguishable from uniform
distribution under the hardness of decision ring-LWE. The
pseudorandomness is preserved when tw is chosen from
the error distribution (by adopting the transformation to
Hermite’s normal form) similar to the one in standard LWE
[36].

Theorem 3. If there exists an adversary A that can break PEKS-
IND-CKA of NTRU-PEKS scheme as in Definition 4, one can
build an adversary F that uses A as subroutine and breaks the
security of the IBE scheme in Definition 2.

Proof. The proof works by having adversaries F and A
initiating the find phase as in Definition 8 and Definition
10 respectively.
Algorithm FKeyQuery(.),H(find ,mpk)

• (mpk,msk)
$←− Setup(q,N): F receives mpk and

passes it to A.

Algorithm ATdQuery(.),H(find , pk)

• Queries on TdQuery(.): Upon such queries, F
queries KeyQuery(.) which keeps a list idSet main-
taining all the previously requested queries and
responses. If the submitted query exists, the same
response is returned, otherwise, to sample short

vectors s, tw the oracle uses msk to run (s, tw)
$←−

Gaussian-Sampler(msk, σ, (H(w), 0)) and passes
tw to F . F sends tw to A.

After the find phase, a hidden fair coin b ∈ {0, 1} is flipped.
Execute (w0, w1)← ATdQuery(.),H(guess, pk)

• Upon receiving (w0, w1), F selects a message m ∈
{0}N and calls Enc(m,w0, w1) that runs encryption
on (wb,m) which works as in Definition 7 and out-
puts sw = 〈c0, c1, H2(k, c1)〉. F relays sw to A.

Finally, A outputs its decision bit b′ ∈ {0, 1}. F also outputs
b′ as its response. Omitting the terms that are negligible in
terms of q and N , the upper bound on IND-CKA of NTRU-
PEKS is as follows.

AdvPEKS-IND-CKA
A (q,N) ≤ AdvNTRU-IBE-ANO-CPA

F (q,N)

Discussion on Subfield Attacks: Subfield attacks target the
presence of a subfield in ideal lattices to solve the over-
stretched version of the NTRU problem. Recently, there have
been noticeable advancements to extend subfield attacks on
ideal lattices [37], [38], [39]. However, as also shown in [38],
these attacks do not affect the parameters that are used in
our scheme.

3.2 Lattice-Based PEKS Scheme in the Standard Model

In this section, we present our highly secure LWE-PEKS
scheme using Abdalla et. al. transformation [12] to trans-
form Agrawal et. al. IBE scheme [14] . For this transforma-
tion to work, aside from being IND-CPA, the underlying
IBE scheme should be anonymous in the sense of Definition
2. While the scheme proposed in [14] does provide the
anonymity required by Abdalla et. al. transformation [12],
in the adaptive security of the scheme, the number of
adversarial queries was bounded by q. In other words, only
the bounded form of the security of the scheme was proven
in [14]. This restriction was later lifted in a more refined
analysis in [15].

Similar to [14], we treat keywords as a sequence of l
bits w = (b1, . . . , bl) ∈ {1,−1}l. Before presenting the
scheme in details, we review the tools that are needed for
the correctness of our LWE-PEKS scheme. In [40], Ajtai
illustrated how to sample a random uniform matrix (with
a small Gram-Schmidt norm) A ∈ Zn×m

q with an associated
basis SA of Λ⊥

q (A). The following theorem, defines the
properties of TrapGen algorithm [14], [41] which is used
in the KeyGen algorithm of the LWE-PEKS scheme.
(A,S)← TrapGen(q, n) : Given a prime q, a positive n and
δ = 1

3 , there is a polynomial time algorithm TrapGen(q, n)
that outputs a pair (A ∈ Zn×m

q ,S ∈ Zm×m) s.t., A is statis-
tically close to uniform and S is a basis for Λ⊥

q (A) , where
m > 6n log q and ˜‖S‖ ≤ O(√n log q) and ‖S‖ ≤ O(n log n)
hold with a high probability.

Following [14], we set σTG = O(√n log q) as the
maximum Gram-Schmidt norm of the basis generated by
TrapGen(q, n).

In the following we define the sampling algorithm
which is used to generate trapdoors in our scheme (i.e.,
SampleLeft), the same algorithm, with identical properties
has also been used in [29], [42].
e← SampleLeft(A,M1,TA,u, σ) : Given an n-rank

matrix A ∈ Zn×m
q , a matrix M1 ∈ Zn×m1

q , a short basis
of Λ⊥

q (A), a vector u ∈ Zn
q , and a Gaussian parameter

σ >
∥

∥

∥T̃A

∥

∥

∥ · ω(
√

log(m+m1)), this algorithm outputs a
vector e ∈ Zm+m1 sampled from the distribution statisti-
cally close to DΛu

q (F1),σ where F1 := (A|M1).
In the following, we present the LWE-PEKS scheme in

detail.
(pk, sk)← KeyGen(λ): On the input of the security param-
eter λ, and the parameters q,m, n, σ, α (set as instructed
in the following section), the receiver works as follows to
generate her key pair.

1) Use TrapGen(q, n) to pick a random matrix A0 ∈
Zn×m
q with basis TA0

for Λ>
q (A0) s.t.

∥

∥

∥T̃A0

∥

∥

∥ ≤
O(√n log q).

8

2) Select l+1 random matrices A1, . . .Al,B
$← Zn×m

q and

a random vector u $← Zn
q .

3) Output the public key pk ← (A0,A1, . . . ,Al,B,u)
and secret key sk ← TA0

.
sw ← PEKS(pk, w): On the input of the pk and an l-bit

keyword w = (b1, . . . , bl) ∈ {1,−1}l, the sender picks b′j
$←

{0, 1} for j = 1, . . . , κ, sets Aw ← B+
∑l

i=1biAi ∈ Zn×m
q

and Fw ← (A0|Aw) ∈ Zn×2m
q . For each b′j , it computes as

follows.
1) Choose a uniformly random sj

$← Zn
q and matrices

Rij

$← {−1, 1}m×m for i = 1, . . . , l and set Rb′

j
←

∑l
i=1 biRij ∈ {−l, . . . , l}m×m.

2) Choose noise vectors xj
Ψα← Zq and yj

Ψm
α← Zm

q , and set
zj ← R>

b′

j
yj ∈ Zm

q .

3) Set c0j ← u>sj + xj + b′jb q2c ∈ Zq and c1j
← F>

wsj +
[

yj

zj

]

∈ Z2m
q .

4) Output searchable ciphertext swj = (c0j , c1j
, b′j) for

j = 1, . . . , κ.
tw ← Trapdoor(pk, sk, w): On the input of the keys and a
keyword w = (bi, . . . , bl) ∈ {1,−1}l, the receiver computes
as follows.

1) Let Aw ← B+
∑l

i=1 biAi ∈ Zn×m
q and sample tw ∈

Z2m
q as tw ← SampleLeft(A0,Aw,TA0

,u,σ)1 .
2) Output the trapdoor as tw.

Given Fw := (A0|Aw), then Fw · tw = u ∈ Zq , and tw is
distributed as DΛu

qFw,σ .
d← Test(tw, sw): Given a trapdoor td for a keyword w =

(bi, . . . , bl) ∈ {1,−1}l, and κ searchable ciphertexts swj
=

(c0j , c1j , b
′
j) for j = 1, . . . , κ on keyword w, it computes as

follows.
i. Set νj ← c0j−twc1j

∈ Zq and check if |νj−b q2c| < b
q
4c,

set νj ← 1 and otherwise, νj ← 0.
ii. If νj = b′j holds for all 1 ≤ j ≤ κ, set d← 1, else d← 0.

3.2.1 Completeness and Consistency

In this section we show the completeness and consistency
of our scheme.

Lemma 3. Given a public-private key pair (pk, sk) ←
KeyGen(λ), a searchable ciphertext sw ← PEKS(pk, w) and a
trapdoor generated by the receiver td ← Trapdoor(pk, sk, w),
the proposed scheme is complete.

Proof. To show the completeness of our scheme for swj :=
(c0j , c1j , b

′
j), the Test algorithm should return 1 when νj =

b′j where νj ← c0j − tdc1j for all j = 1, . . . , κ. To affirm this,
we work as follows.

νj = c0j − tw
>c1j

= u>sj + xj + b′jb
q

2
c − tw

(

F>
idsj +

[

yj

zj

]

)

= u>sj + xj + b′jb
q

2
c − u>sj − tw

>
[

yj

zj

]

= b′jb
q

2
c+ x− tw

>
[

yj

zj

]

1As shown in [14], A0 is of rank n, with a high probability.

TABLE 1
Parameter sizes of our schemes and their pairing-based counterparts

for κ = 192.

Schemes
Public

Key (Kb)
Private

Key (Kb)
SC† (Kb) TD‡ (Kb)

BCOP [5] 0.38 0.19 0.57 0.38
ZI [17] 0.76 0.19 0.89 0.57

NTRU-PEKS 27.2 32 52 27
LWE-PEKS 57,216 14,647,390 186,867 112

† SC refers to searchable ciphertext (i.e., the output of the PEKS algorithm).
‡ TD refers to trapdoor (i.e., the output of the Trapdoor algorithm).

Where x − t>w

[

yj
zj

]

is the error term. Based on Lemma 22

in [14], the error term is bounded by q · σ · l · m · α · ω ·
(
√
logm)+O(σm3/2). For the system to work correctly, one

needs to make sure that:
i. α < [σ · l ·m · ω(√logm)]−1 and q = Ω(σm3/2),

ii. m > 6n log q so TrapGen can operate,
iii. σ is large enough so that SampleLeft as de-

fined above, and SampleRight (which is similar to
SampleLeft, and is used in the proof of [14]) can
operate, i.e., σ > l ·m · ω(√logm)

iv. For Regev’s [16] reduction to work, set q > 2
√
n/α .

To achieve these requirements, we set q ≥ m2.5 ·
ω(
√
log n),m = 6n1+δ , σ = ml · ω(√log n), α = [l2m2 ·

ω(
√
log n)]−1. This is based on the assumption that δ such

that nδ > dlog2 qe.
Following the results of Lemma 13 and Lemma 19 in

[14], setting the parameters of the scheme as suggested
above will ensure the right-keyword consistency of our
PEKS scheme with a high probability.

Theorem 4. The LWE-PEKS scheme is consistent in the sense of
Definition 11.

Proof. For the Test algorithm to return 1, all the κ bits
of b′j and νj for 1 ≤ j ≤ κ should match. This implies
that given Aw (obtained from the bit string in the keyword
w), the SampleLeft algorithm should sample short vectors
statistically close (i.e., have negligible statistical distance)
to Fw ← (A0|Aw). Therefore, our adversary based consis-
tency comes from the Theorem 3.4 in [42] (and the signing
algorithm in [29]) that proves the statistical closeness of tw
that is generated by the SampleLeft on the input of Fw.
Therefore, for the suggested parameters and based on [29],
[42], our LWE-PEKS scheme is consistent.

3.2.2 Security Analysis

Based on [32], the hardness of lattice problems is measured
using the root Hermite factor.

Following Lemma 1, to establish the security of our
LWE-PEKS scheme, we need to establish the anonymity
property of the underlying IBE scheme. In [14], Agrawal
et al. proved the security of their adaptive IBE scheme
with a strong privacy property called indistinguishable from
random, which is a stronger security notion as compared to
the anonymity property defined in [12], [43]. In the initial
proposal of [14], for the security proof of the adaptive

9

variant of the scheme, there was a restriction where q > Q
where Q is the number of queries made by the adversary.
This restriction was later lifted in by a more refined analysis
in [15]. This implies that based on Lemma 1, the resulting
LWE-PEKS scheme is secure in the standard model. Based
on [32], the hardness of lattice problems is measured using
the root Hermite factor. For a vector v in an N-dimension
lattice that is larger than the nth root of the determinant, the
root Hermite factor is computed as γ = ‖v‖

det(Λh,q)1/n
. For our

LWE-PEKS scheme, we follow the suggested parameters
in [33], [44] to achieve ≈ 192-bit security for message and
randomness recovery attack with γ ≈ 1.0042.

3.3 Secure Channel Requirement

Baek et al. [45] highlighted the requirement of a secure
channel for trapdoor transmission between the receiver and
the server and proposed the notion of Secure-Channel Free
(SCF) PEKS schemes. SCF-PEKS schemes require the server
to be initialized with a key pair through which the receiver
encrypts the trapdoor before sending it over a public (in-
secure) channel. Upon receiving the encrypted trapdoor,
the server will first decrypt the trapdoor before initiating
the Test algorithm. Offline keyword-guessing attack, as
introduced by Byun et al. [46], implies the ability of an
adversary to find which keyword was used to generate the
trapdoor. This inherent issue is due to low-entropy nature of
the commonly selected keywords and public availability of
the encryption key [18]. Since Byun et al.’s work [46], there
have been a number of attempts in proposing schemes that
address keyword guessing attacks [47], [48], [49]. However,
in all of the proposals, once the trapdoor is revealed to
the server, keyword guessing attacks remain a perpetual
problem [49]. Jeong et al. [49] showed the trade-off between
the security of a PEKS scheme against keyword-guessing
attacks and its consistency - by mapping a trapdoor to
multiple keywords. For our scheme, we can assume a con-
ventional or even post quantum secure [50], [51] SSL/TLS
connection between the receiver and the server. We believe
such reliable protocols provide the best means for commu-
nicating trapdoors to the servers. Establishing a secure line
through SSL/TLS could be much more efficient than using
any public key encryption as in SCF-PEKS. Since in such
protocols, after the handshake protocol, all communications
are encrypted using symmetric encryption.

3.4 Alternative NTRU-based Constructions

Bellare et al. [52] proposed a new variation of public key
encryption with search capability called Efficiently Search-
able Encryption (ESE). The idea behind ESE is to store a
deterministically computed “tag” along with the ciphertext.
To respond to search queries, the server only needs to
lookup for a tag in a list of sorted tags. This significantly
reduces the search time on the server. For ESE to provide
privacy, the keywords need to be selected from a distribu-
tion with a high min-entropy. To compensate for privacy in
absence of a high min-entropy distribution for keywords,
the authors suggested truncating the output of the hash
function to increase the probability of collisions. However,

TABLE 2
Micro Benchmark (One Execution) of our schemes and their

pairing-based counterparts

Schemes † PEKS

(ms)
Trapdoor

(ms)
Test

(ms)

BCOP [5] κ = 80 6.78 1.26 4.55
κ = 192 66.31 4.13 60.75

ZI [17] κ = 80 48.87 4.12 12.93
κ = 192 301.14 10.61 166.12

NTRU-PEKS
κ = 80 1.97 9.71 1.05
κ = 192 4.44 31.59 3.40

LWE-PEKS
κ = 80 2115.12 814.9 643
κ = 192 3727 1509.19 1214

this directly affects the consistency of the scheme and shifts
the burden of decrypting unrelated responses to the receiver.
As compared to PEKS schemes, in ESE schemes, the tag can
be computed from both the plaintext and ciphertext. This
highly differentiates the applications of these two searchable
encryption schemes.

In this paper, we focused on PEKS scheme as it does
not have consistency issues or a min-entropy distribution
requirement, and fits better for our target real-life applica-
tions (as discussed in Section 1). Nevertheless, for the sake
of completeness, to extend the advantages of NTRU-based
encryption [53] to ESE, we also instantiated an NTRU-based
ESE scheme based on the encrypt-with-hash transformation
proposed in [52]. We compared it with its counterpart
which was instantiated based on El-Gamal encryption. Our
implementations of NTRU-based ESE and El-Gamal ESE
(developed on elliptic curves) were run on an Intel i7
6700HQ 2.6GHz CPU with 12GB of RAM . We observed
that encryption for NTRU-based ESE takes 0.011ms where
encryption in El-Gamal ESE takes 2.595ms. As for decryp-
tion, NTRU-based ESE takes 0.013ms and El-Gamal ESE
takes 0.782ms. The differences are substantial, since the
NTRU-base ESE is 236× and 60× faster in encryption and
decryption, respectively.

4 PERFORMANCE ANALYSIS AND COMPARISON

We first give the analytical performance comparison and
then describe our experimental setup and evaluation met-
rics. We then provide a detailed performance analysis and
cost dissection of our scheme in a cloud setting. To the
best of our knowledge, this is the first deployment of PEKS
schemes in real-life cloud infrastructure with public data
sets.

4.1 Analytical Performance Comparison

In this section, we first present a set of recommended
parameters for our scheme which were used in our instanti-
ations and then discuss the analytical performance from the
computation
Parameters: For NTRU-PEKS, with 80-bit security, we set
N = 512 and q = 223. For 192-bit security, we set N = 1024
and q = 227. Following [13], the Gram-Schmidt norm of
coefficients of the private key is set as s ≈

√

qe
2 , where e

is the base of natural logarithm. As illustrated in Section
3.1, the error terms r, e1, e2 are N-dimension vectors with
coefficients in {−1, 0, 1}N . For LWE-PEKS, with 80-bit secu-
rity, we set n = 256, q = 4093 and σ = 8.35. For 192-bit

10

security, we set n = 320, q = 4093 and σ = 8. Error terms
are sampled from the distribution as defined in Definition
12.
Computation: The main performance advantage of NTRU-
PEKS stems from the fact that the Test algorithm is ex-
ecuted once on every keyword-file pair for each search
query. Therefore, since the Test algorithm of our NTRU-
PEKS scheme only requires one convolution product, which
is much more efficient than the bilinear pairing operation
required in almost all of the existing pairing-based PEKS
schemes, we achieve noticeable performance gains in terms
of the end-to-end delay. The dominant operations of the
PEKS algorithm in our NTRU-PEKS scheme are two convo-
lution products of form x1 ∗ x2. However, since one of the

operands has very small coefficients (i.e., r $←− {−1, 0, 1}N),
the convolution products can be computed very efficiently.
Specifically, in our case, since N has been selected as a
power-of-two integer, the convolution product can be com-
puted in N logN operations by the Fast Fourier Transform.
The PEKS algorithm in BCOP scheme requires one bilinear
pairing operation that is more costly than the convolution
products. The Trapdoor algorithm in NTRU-PEKS requires
a Gaussian Sampling, similar as in [13], [25]. This is the most
costly operation in our scheme. This algorithm in BCOP
only requires one scalar multiplication and consequently,
it is the fastest. For LWE-PEKS, it requires the same type
of operations as in NTRU-PEKS, however, mostly due to
the very large dimension of the parameters, it suffers from
significant performance loss as compared to its pairing-
based counterpart.
Storage and Communication: In terms of storage and
communication, our schemes are more storage intensive
than their pairing-based counterparts. For instance, in our
most efficient scheme (i.e., NTRU-PEKS), the sender needs
to store the receiver’s public key of size N · log2 q. Referring
to Table 1, for 192-bit security, it can be up to 27.2 Kb. The
searchable ciphertext in NTRU-PEKS scheme 3N log2(q)
bits, which corresponds to 52 Kb. Trapdoor in NTRU-PEKS
scheme 2N log2(2sπ) bits, where s defines the norm of the
Gram-Schmidt coefficient. As depicted in Table 1 the size
of the searchable ciphertext in NTRU-PEKS is significantly
larger than the one in BCOP [5]. However, in Section 4.3, we
show that in the deployment of the schemes, even though
our NTRU-PEKS scheme incurs a higher communication
overhead, this overhead is insignificant when the end-to-
end search delay is considered (as compared to the pairing-
based counterparts), even with a moderate-speed network.

For LWE-PEKS, the public key is n · log2 q((l+2) ·m+1)
bits, where as alluded to in Section 3.2, m = 6n1+δ and
l is the bit length of the keyword. As suggested in [14],
δ should be set such that nδ > dlog2 qe. The searchable
ciphertext size is κ(2m + 1) log2 q. As depicted, in Table 1
the parameter sizes of LWE-PEKS is significantly larger than
those of NTRU-PEKS scheme.

4.2 Evaluation Metrics and Experimental Setup

Evaluation Metrics: We implemented our NTRU-PEKS
scheme based on the preliminary implementations in [54],
[55]). As aforementioned, PEKS schemes have potential
applications in settings with heterogeneous devices. Since in

most of these applications, the smaller devices are conceived
to be in the role of a sender, in our experiments, their
performance is evaluated in terms of searchable ciphertext
generation and sending it to the server. In other applications
(e.g., secure e-mail system), commodity hardware may also
generate searchable ciphertext and send it to the e-mail
server. Thus, their cost is also evaluated on commodity
hardware. The receiver/auditor generates a trapdoor to
search over the database and process the results. In most
applications, the receiver is conceived to be equipped with
a commodity hardware (e.g., Laptop). Therefore, we eval-
uated trapdoor generation and sending it to the server on
commodity hardware only.
Software Libraries and Hardware Configurations:

We fully implemented our NTRU-PEKS scheme in C++,
using NTL [56], ZeroMQ and b2 libraries. NTL library
was used for low-level arithmetic and matrix operations
whereas ZeroMQ was used for network communication.
b2 library is a portable C implementation of high-speed
Blake2 hash function [57]. Blake2 is used in the full im-
plementation of NTRU-PEKS to map keywords to vec_ZZ
type. More specifically, we used Blake2 as a pseudorandom
function (PRF), in our Trapdoor and PEKS algorithms.
The implementation of the pairing-based counterpart [5]
was obtained from MIRACL library, that was provided as a
simulation. We extended this implementation for real cloud
setting, therefore, in addition to MIRACL, ZeroMQ library is
also used in this implementation. Elliptic curves for BCOP
scheme were selected based on MIRACL, specifically, we
used MNT curve with κ = 80-bit security (with embedding
degree k = 6) and KSS curve with κ = 192-bit security
(with embedding degree k = 18). We made both of the
implementations open-sourced for further improvements
and adoption2. For the schemes in the standard model, we
only simulated the implementation of our LWE-PEKS and
its pairing-based counterpart [17]. Therefore, due to their
poor computational performance and parameter sizes (for
LWE-PEKS), we decided not to go ahead with the full-
fledged implementation and merely provide an overview
of how costly these schemes could be as compared to the
schemes in the random oracle model.

As the commodity hardware, we used an Intel Core i7-
6700HQ laptop with a 2.6 GHz CPU and 12GB RAM. As
a low-power device, we selected ARM Cortex A53 proces-
sor, due to its flexibility and low-power consumption [58].
Although it is a low-power device (can run with a small
2200 mAh battery), ARM Cortex A53 is equipped with a
64-bit 1 GHz processor and 1 GB SDRAM. It is extensively
preferred in practice since it combines powerful processing
power with low energy consumption [58]. At the server-
side, we used an Amazon EC2 instance located in Oregon,
with a single core Intel(R) Xeon(R) CPU E5-2676 operating
at 2.4GH, 2GB RAM and 250 GB SSD. Since our parameter
sizes are larger than pairing-based schemes, we preferred to be
conservative and selected a moderate-speed network with a 75
Mbps connection for both commodity hardware and ARM pro-
cessor. The ping to the server is measured as 25.23 ms and
26.78 ms from commodity hardware and ARM processor,

2https://github.com/Rbehnia/Full_PEKS

11

Fig. 2. End-to-end search time of NTRU-PEKS for κ = 192.

respectively. In our experiments, we used subsets of publicly
available Enron e-mail dataset.

One can notice that despite the strong security assur-
ances that schemes in the standard model offer, the com-
putation and storage overhead (especially for LWE-PEKS)
marks their impracticality, especially with the current state
computation capabilities of commodity hardware.

4.3 Performance Evaluation

Table 2 shows the experimental results obtained from
the full-fledged implementation of our lattice-based PEKS
schemes and the one proposed in [5], [17]. As illustrated,
our NTRU-PEKS scheme is 15× and 18× faster than BCOP
in the PEKS and Test algorithms, respectively. However,
due to costly Gaussian Sampling, the Trapdoor algorithm
is approximately 8× slower than the one in BCOP scheme.
We note that due to the latest advancements in Gaussian
sampling techniques, one can instantiate the Test algo-
rithm with more recent algorithms, for instance, using the
method proposed in [59]. As for communication, sending
one searchable ciphertext (for κ = 192 bits, equivalent to 52
Kb of data), with our moderate-speed network setting takes
only 94 ms which is only 12 ms higher than that of BCOP.
This communication cost becomes much costlier in LWE-
PEKS. Sending a Trapdoor, which needs to be done once
per receiver query on the server, takes 92 ms in our scheme
which is only 12 ms more than that in the BCOP scheme.

As for our implementation on ARM processor, the
searchable ciphertext generation takes 22.58 ms in our
scheme which is 40× faster than that of BCOP. As afore-
mentioned, we did not benchmark the Trapdoor algorithm
since in most applications, these devices operate as senders.
The communication of one searchable ciphertext in our
scheme takes 100 ms on ARM processor with the aforemen-
tioned network setting which is only 14.5 ms higher than
that of BCOP scheme.

4.4 Detailed Analysis and Cost Dissection

Figure 2 and Figure 3 show the cost dissection of the end-
to-end delays for NTRU-PEKS and LWE-PEKS when the

Fig. 3. End-to-end search time of LWE-PEKS for κ = 192.

receiver searches over the database for κ = 192 based on our
full-fledged implementation and simulation results, respec-
tively. As depicted, server computation which is running
the Test algorithm, dominates the total cost for both of
the schemes since it is executed once per each keyword-
file pair (linear) in the database. Disk access time on the
server is also linear to the number of keyword-file pairs
in the database, however, it is much faster as compared to
the Test algorithm . Therefore, it contributes to 3% of the
total end-to-end delay in NTRU-PEKS. Due to the larger
parameter sizes in LWE-PEKS this increases to 15% of the
total end-to-end delay.

We conducted experiments with varying sizes of
database, up to 200,000 keyword-file pairs. As depicted in
Figure 4, for 200,000 keyword-file pairs, BCOP algorithm
takes 3.34 hours, whereas NTRU-PEKS takes 11.71 minutes.
Both of these times are dominated by the Test computation
on the server-side, since the receiver generates and sends the
Trapdoor only once for each search.

We implemented PEKS on both the commodity hard-

Fig. 4. End-to-end search time comparison for κ = 192.

12

ware and ARM processors. We observed significant im-
provements on the ARM processor, wherein specifically, for
κ = 192, the PEKS algorithm only takes 22.58 ms which is
40× faster than BCOP in ARM Cortex A53. This difference
is mainly due to the fact that our PEKS algorithm does
not require any expensive operations (e.g., exponentiation
or pairing computation) and matrix operations can be ef-
ficiently computed on a wide range of devices. Another
advantage of our scheme is the energy efficiency (longer
battery life) on these devices. The energy consumption of a
device is linear with the computation time (E = V · I · t,
where E = energy, V = voltage, I = current and t =
time). Therefore, with our NTRU-PEKS scheme, battery
replacement cost and cryptographic overhead on energy
consumption would potentially decrease significantly.

We observed that although parameter sizes for NTRU-
PEKS are much larger than the pairing-based counterpart,
they do not significantly affect the communication delay.
More specifically, as aforementioned communication dif-
ference between NTRU-PEKS and BCOP is only around
10 − 15 ms. The reason behind this is the round-trip delay
time (RTT) from our moderate-speed home network (which
is located in the same state as the server, i.e., Oregon) to
the server is 25.23 ms and 26.78 ms, for commodity hard-
ware and ARM processor, respectively. With a three-way
handshake in TCP, RTT dominates the total communication
cost, resulting in an insignificant difference between our
NTRU-PEKS and BCOP. This shows that, although NTRU-
based schemes have larger parameters, their computational
results in a lower end-to-end delay as compared to their
communication efficient counterparts (e.g., pairing-based
schemes). When the schemes in the standard model are
considered, based on our simulated results, as depicted in
Figure 4, the gap between the BCOP scheme and ZI scheme
(which is secure in the standard model) is much less than
the gap between NTRU-PEKS and the LWE-PEKS which is
secure in the standard model.

4.5 Discussion

We presented the first full-fledged implementations for
PEKS schemes, and make our implementation open-sourced
for further adoption and improvements. Our experiments
showed that (i) Test algorithm dominates the total search
time since it runs O(L) times (linear with the number of
keyword-file pairs, L). (ii) The efficiency of PEKS algorithm
is also crucial since it is to be run on energy-constrained
devices in heterogeneous settings. (iii) Given that lattice-
based schemes have larger parameters and require signif-
icantly larger ciphertexts/trapdoors to be transferred, in
a real cloud setting, with a moderate speed network, the
communication time difference with pairing-based schemes
could be insignificant.

For real-world cases with large databases, our NTRU-
PEKS scheme seems to be the only practical solution at this
moment. We believe that this is one of the main aspects
of our scheme that makes it an attractive candidate to be
implemented for real-world applications.

5 RELATED WORK

Searchable encryption can be instantiated from both sym-
metric or asymmetric key settings. Song et al. [2] proposed
the first SE scheme that relies on symmetric key cryptog-
raphy. Kamara et al. [60] proposed the first DSSE scheme
to address the limitation of its static ancestors. While being
highly efficient, symmetric SE schemes are more suitable for
applications that involve a single client who outsources her
own data to the cloud relying on her private key.

In this paper, given the target applications that need mul-
tiple heterogeneous entities to create searchable encrypted
data, our focus is on SE schemes instanced in asymmetric
settings. In particular, we concentrate on PEKS, as it requires
neither specific probability distributions on keywords nor
performance/consistency trade-offs as dictated by some
other asymmetric alternatives (e.g., ESE as discussed in
Section 3.4). In PEKS schemes, decryption and trapdoor
generation take place using the private key of the receiver,
while any user can use the corresponding public key to
generate searchable ciphertext. With a few exceptions, all
of the proposed PEKS schemes are developed using costly
bilinear pairing operations. The first instance of pairing-free
PEKS schemes are constructed by Crescenzo and Saraswat
[21] based on the IBE scheme in [61], which is constructed
using quadratic residue for a composite modulus. Khader
[62] proposed the first instance of such schemes in the
standard model based on a k-resilient IBE, she also put forth
a scheme which supports multiple-keyword search.

In the Trapdoor algorithm of NTRU-PEKS and LWE-
PEKS, following the works in [13] and [14], the receiver uses
its secret, which is a short basis of the lattice, as a trapdoor
to sample short vectors. Using the short basis of the lattice
as a trapdoor to efficiently sample private keys (trapdoors,
in the case of PEKS schemes) has been extensively studied
in the literature (e.g., [63], [64], [65], [66], [67]).

ACKNOWLEDGMENTS

The authors would like to thank Leo Ducas and Thomas
Prest for their valuable discussions. The authors would also
like to thank the anonymous reviewers of IEEE TDSC whose
comments significantly helped to improve the quality of this
paper. This work is supported by the NSF CAREER Award
CNS-1652389.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica et al.,
“Above the clouds: A berkeley view of cloud computing,” 2009.

[2] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proceeding IEEE Symposium on
Security and Privacy S&P, 2000, pp. 44–55.

[3] A. A. Yavuz and J. Guajardo, “Dynamic searchable symmetric
encryption with minimal leakage and efficient updates on com-
modity hardware,” in Selected Areas in Cryptography – SAC 2015,
O. Dunkelman and L. Keliher, Eds. Springer Berlin Heidelberg,
2016, pp. 241–259.

[4] M. O. Ozmen, T. Hoang, and A. A. Yavuz, “Forward-private
dynamic searchable symmetric encryption with efficient search,”
in 2018 IEEE International Conference on Communications (ICC), May
2018, pp. 1–6.

13

[5] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
Key Encryption with Keyword Search,” in Advances in Cryptology -
EUROCRYPT 2004: International Conference on the Theory and Appli-
cations of Cryptographic Techniques, C. Cachin and J. L. Camenisch,
Eds. Springer Berlin Heidelberg, 2004, pp. 506–522.

[6] D. J. Park, K. Kim, and P. J. Lee, “Public key encryption with con-
junctive field keyword search,” in Information Security Applications,
C. H. Lim and M. Yung, Eds. Springer Berlin Heidelberg, 2005,
pp. 73–86.

[7] D. Boneh and B. Waters, “Conjunctive, subset, and range queries
on encrypted data,” in Theory of Cryptography Proceedings, S. P.
Vadhan, Ed. Springer Berlin Heidelberg, 2007, pp. 535–554.

[8] E. Shi, J. Bethencourt, T.-H. H. Chan, D. Song, and A. Perrig,
“Multi-dimensional range query over encrypted data,” in Proceed-
ings of the 2007 IEEE Symposium on Security and Privacy S&P. IEEE
Computer Society, 2007, pp. 350–364.

[9] J. Bringer, H. Chabanne, and B. Kindarji, “Error-tolerant searchable
encryption,” in IEEE International Conference on Communications,
2009, pp. 1–6.

[10] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward
private searchable encryption from constrained cryptographic
primitives,” Cryptology ePrint Archive, Report 2017/805, 2017,
https://eprint.iacr.org/2017/805.

[11] R. Bost, “Sophos - forward secure searchable encryption,” Cryp-
tology ePrint Archive, Report 2016/728, 2016, https://eprint.iacr.
org/2016/728.

[12] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange,
J. Malone-Lee, G. Neven, P. Paillier, and H. Shi, “Searchable
encryption revisited: Consistency properties, relation to anony-
mous ibe, and extensions,” in Advances in Cryptology – CRYPTO
2005: 25th Annual International Cryptology Conference, V. Shoup, Ed.
Springer Berlin Heidelberg, 2005, pp. 205–222.

[13] L. Ducas, V. Lyubashevsky, and T. Prest, “Efficient identity-based
encryption over ntru lattices,” in Advances in Cryptology – ASI-
ACRYPT 2014: 20th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, P. Sarkar and T. Iwata,
Eds. Springer Berlin Heidelberg, 2014, pp. 22–41.

[14] S. Agrawal, D. Boneh, and X. Boyen, “Efficient lattice (h)ibe in the
standard model,” in Advances in Cryptology – EUROCRYPT 2010:
29th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, H. Gilbert, Ed. Springer Berlin Hei-
delberg, 2010, pp. 553–572.

[15] X. Boyen, “Lattice mixing and vanishing trapdoors: A framework
for fully secure short signatures and more,” in Public Key Cryptog-
raphy – PKC 2010: 13th International Conference on Practice and The-
ory in Public Key Cryptography, P. Q. Nguyen and D. Pointcheval,
Eds. Springer Berlin Heidelberg, 2010, pp. 499–517.

[16] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” in Proceedings of the Thirty-seventh Annual ACM
Symposium on Theory of Computing. ACM, 2005, pp. 84–93.

[17] R. Zhang and H. Imai, “Generic combination of public key encryp-
tion with keyword search and public key encryption,” in Cryptol-
ogy and Network Security Proceedings, F. Bao, S. Ling, T. Okamoto,
H. Wang, and C. Xing, Eds. Springer Berlin Heidelberg, 2007, pp.
159–174.

[18] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably
secure searchable encryption,” ACM Comput. Surv., vol. 47, no. 2,
pp. 18:1–18:51, 2014.

[19] R. Behnia, A. A. Yavuz, and M. O. Ozmen, “High-speed high-
security public key encryption with keyword search,” in Data
and Applications Security and Privacy XXXI: 31st Annual IFIP WG
11.3 Conference, G. Livraga and S. Zhu, Eds. Cham: Springer
International Publishing, 2017, pp. 365–385.

[20] S. Halevi, “A sufficient condition for key-privacy.” IACR Cryptol-
ogy ePrint Archive, vol. 2005, p. 5, 2005.

[21] G. Di Crescenzo and V. Saraswat, “Public key encryption with
searchable keywords based on jacobi symbols,” in Progress in
Cryptology – INDOCRYPT 2007: 8th International Conference on
Cryptology in India, K. Srinathan, C. P. Rangan, and M. Yung, Eds.
Springer Berlin Heidelberg, 2007, pp. 282–296.

[22] M. Ajtai, “Generating hard instances of lattice problems,” in
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing. ACM, 1996, pp. 99–108.

[23] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based
public key cryptosystem,” pp. 267–288, 1998.

[24] J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman,
and W. Whyte, “NTRUSign: Digital signatures using the NTRU

lattice,” in Topics in Cryptology — CT-RSA 2003 Proceedings, M. Joye,
Ed. Springer Berlin Heidelberg, 2003, pp. 122–140.

[25] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” in Proceedings of the
Fortieth Annual ACM Symposium on Theory of Computing. New
York, NY, USA: ACM, 2008, pp. 197–206.

[26] P. Q. Nguyen and O. Regev, “Learning a parallelepiped: Crypt-
analysis of ggh and ntru signatures,” J. Cryptol., vol. 22, no. 2, pp.
139–160, 2009.

[27] D. Micciancio and O. Regev, “Worst-case to average-case reduc-
tions based on gaussian measures,” SIAM Journal on Computing,
vol. 37, no. 1, pp. 267–302, 2007.

[28] L. Ducas and P. Q. Nguyen, “Faster gaussian lattice sampling
using lazy floating-point arithmetic,” in ASIACRYPT 2012: 18th
International Conference on the Theory and Application of Cryptology
and Information Security, X. Wang and K. Sako, Eds. Springer
Berlin Heidelberg, 2012, pp. 415–432.

[29] C. Peikert, “Bonsai trees (or, arboriculture in lattice-based cryp-
tography),” Cryptology ePrint Archive, Report 2009/359, 2009,
http://eprint.iacr.org/2009/359.

[30] T. Prest, “Gaussian sampling in lattice-based cryptography,” PhD
Thesis, École Normale Supérieure, 2015.

[31] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, “Lattice
signatures and bimodal gaussians,” in Advances in Cryptology –
CRYPTO 2013, R. Canetti and J. A. Garay, Eds. Springer Berlin
Heidelberg, 2013, pp. 40–56.

[32] N. Gama and P. Q. Nguyen, “Predicting lattice reduction,” in Ad-
vances in Cryptology – EUROCRYPT 2008: 27th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
N. Smart, Ed. Springer Berlin Heidelberg, 2008, pp. 31–51.

[33] Y. Chen and P. Q. Nguyen, “BKZ 2.0: Better lattice security
estimates,” in ASIACRYPT 2011: 17th International Conference on the
Theory and Application of Cryptology and Information Security, D. H.
Lee and X. Wang, Eds. Springer Berlin Heidelberg, 2011, pp. 1–20.

[34] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices
and learning with errors over rings,” in Advances in Cryptology
– EUROCRYPT 2010: 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, H. Gilbert, Ed.
Springer Berlin Heidelberg, 2010, pp. 1–23.

[35] ——, “A toolkit for ring-lwe cryptography,” in Advances in Cryp-
tology – EUROCRYPT 2013: 32nd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, T. Johansson
and P. Q. Nguyen, Eds. Springer Berlin Heidelberg, 2013, pp.
35–54.

[36] D. Micciancio and O. Regev, “Lattice-based cryptography,” in
Post-Quantum Cryptography, D. J. Bernstein, J. Buchmann, and
E. Dahmen, Eds. Springer Berlin Heidelberg, 2009, pp. 147–191.

[37] D. J. Bernstein, “A subfield-logarithm attack against ideal lattices,”
http://blog.cr.yp.to/20140213-ideal.html, 2014.

[38] M. Albrecht, S. Bai, and L. Ducas, “A subfield lattice attack on
overstretched NTRU assumptions,” in Advances in Cryptology –
CRYPTO 2016, M. Robshaw and J. Katz, Eds. Springer Berlin
Heidelberg, 2016, pp. 153–178.

[39] P. Kirchner and P.-A. Fouque, “Revisiting lattice attacks on over-
stretched ntru parameters,” in Advances in Cryptology – EURO-
CRYPT 2017: 36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, J.-S. Coron and J. B.
Nielsen, Eds. Cham: Springer International Publishing, 2017, pp.
3–26.

[40] M. Ajtai, “Generating hard instances of the short basis problem,”
in Automata, Languages and Programming: 26th International Collo-
quium, J. Wiedermann, P. van Emde Boas, and M. Nielsen, Eds.
Springer Berlin Heidelberg, 1999, pp. 1–9.

[41] J. Alwen and C. Peikert, “Generating shorter bases for hard
random lattices,” Theory of Computing Systems, vol. 48, no. 3, pp.
535–553, Apr 2011.

[42] D. Cash, D. Hofheinz, and E. Kiltz, “How to delegate a lattice
basis,” Cryptology ePrint Archive, Report 2009/351, 2009, http:
//eprint.iacr.org/2009/351.

[43] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval, “Key-
privacy in public-key encryption,” in Advances in Cryptology —
ASIACRYPT 2001 Proceedings, C. Boyd, Ed. Springer Berlin
Heidelberg, 2001, pp. 566–582.

[44] R. Lindner and C. Peikert, “Better key sizes (and attacks) for LWE-
based encryption,” in Topics in Cryptology – CT-RSA 2011: The
Cryptographers’ Track at the RSA Conference 2011, A. Kiayias, Ed.
Springer Berlin Heidelberg, 2011, pp. 319–339.

14

[45] J. Baek, R. Safavi-Naini, and W. Susilo, “Public key encryption
with keyword search revisited,” in Computational Science and
Its Applications, O. Gervasi, B. Murgante, A. Laganà, D. Taniar,
Y. Mun, and M. L. Gavrilova, Eds. Springer Berlin Heidelberg,
2008, pp. 1249–1259.

[46] J. W. Byun, H. S. Rhee, H.-A. Park, and D. H. Lee, “Off-line
keyword guessing attacks on recent keyword search schemes over
encrypted data,” in Secure Data Management: Third VLDB Workshop
Proceedings, W. Jonker and M. Petković, Eds. Springer Berlin
Heidelberg, 2006, pp. 75–83.

[47] C. Hu and P. Liu, “A secure searchable public key encryption
scheme with a designated tester against keyword guessing attacks
and its extension,” in Advances in Computer Science, Environment,
Ecoinformatics, and Education, S. Lin and X. Huang, Eds. Springer
Berlin Heidelberg, 2011, pp. 131–136.

[48] L. Fang, W. Susilo, C. Ge, and J. Wang, “Public key encryption with
keyword search secure against keyword guessing attacks without
random oracle,” Information Sciences, vol. 238, pp. 221 – 241, 2013.

[49] I. R. Jeong, J. O. Kwon, D. Hong, and D. H. Lee, “Constructing
PEKS schemes secure against keyword guessing attacks is possi-
ble?” Computer Communications, vol. 32, no. 2, pp. 394 – 396, 2009.

[50] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila, “Post-quantum
key exchange for the tls protocol from the ring learning with errors
problem,” in 2015 IEEE Symposium on Security and Privacy, 2015,
pp. 553–570.

[51] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-
quantum key exchange—a new hope,” in 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX: USENIX Associa-
tion, 2016, pp. 327–343.

[52] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and
efficiently searchable encryption,” in Advances in Cryptology -
CRYPTO 2007: 27th Annual International Cryptology Conference,
A. Menezes, Ed. Springer Berlin Heidelberg, 2007, pp. 535–552.

[53] W. Whyte, N. Howgrave-Graham, J. Hoffstein, J. Pipher, J. H.
Silverman, and P. S. Hirschhorn, “IEEE P1363. 1 Draft 10: Draft
Standard for Public Key Cryptographic Techniques Based on Hard
Problems over Lattices.” IACR Cryptology EPrint Archive, vol. 2008,
p. 361, 2008.

[54] T. Prest, “Lattice-IBE,” https://github.com/tprest/Lattice-IBE,
2013.

[55] R. Behnia, “NTRUPEKS,” https://github.com/Rbehnia/
NTRUPEKS, 2016.

[56] V. Shoup, “NTL: A library for doing number theory,” http://www.
shoup.net/ntl, 2003.

[57] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, “Sha-3
proposal blake,” Submission to NIST (Round 3), 2010. [Online].
Available: http://131002.net/blake/blake.pdf

[58] V. Vujović and M. Maksimović, “Raspberry pi as a sensor web
node for home automation,” Comput. Electr. Eng., vol. 44, no. C,
pp. 153–171, May 2015.

[59] L. Ducas and T. Prest, “Fast fourier orthogonalization,” in Pro-
ceedings of the ACM on International Symposium on Symbolic and
Algebraic Computation, ser. ISSAC ’16. New York, NY, USA: ACM,
2016, pp. 191–198.

[60] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in
Financial Cryptography and Data Security, R. Sion, R. Curtmola,
S. Dietrich, A. Kiayias, J. M. Miret, K. Sako, and F. Sebé, Eds.
Springer Berlin Heidelberg, 2010, pp. 136–149.

[61] C. Cocks, “An identity based encryption scheme based on
quadratic residues,” in Cryptography and Coding: 8th IMA Inter-
national Conference Cirencester, B. Honary, Ed. Springer Berlin
Heidelberg, 2001, pp. 360–363.

[62] D. Khader, “Public key encryption with keyword search based on
K-resilient IBE,” in Proceedings of the 2007 International Conference on
Computational Science and Its Applications. Springer-Verlag, 2007,
pp. 1086–1095.

[63] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler,
tighter, faster, smaller,” in Proceedings of the 31st Annual Interna-
tional Conference on Theory and Applications of Cryptographic Tech-
niques, ser. EUROCRYPT’12. Springer-Verlag, 2012, pp. 700–718.

[64] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” in Proceedings of the
Fortieth Annual ACM Symposium on Theory of Computing, ser. STOC
’08. New York, NY, USA: ACM, 2008, pp. 197–206.

[65] R. W. F. Lai, H. K. F. Cheung, and S. S. M. Chow, “Trapdoors
for ideal lattices with applications,” in Information Security and
Cryptology, D. Lin, M. Yung, and J. Zhou, Eds. Cham: Springer
International Publishing, 2015, pp. 239–256.

[66] N. Genise and D. Micciancio, “Faster gaussian sampling for trap-
door lattices with arbitrary modulus,” Cryptology ePrint Archive,
Report 2017/308, 2017, https://eprint.iacr.org/2017/308.

[67] R. Bendlin, S. Krehbiel, and C. Peikert, “How to share a lattice trap-
door: Threshold protocols for signatures and (h)ibe,” in Applied
Cryptography and Network Security, M. Jacobson, M. Locasto, P. Mo-
hassel, and R. Safavi-Naini, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 218–236.

